
ImageNet/ResNet-50 Training in 224 Seconds

Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U-chupala,
 Yoshiki Tanaka and Yuichi Kageyama

Sony Corporation
{Hiroaki.Mikami, Hisahiro.Suganuma, Pongsakorn.Uchupala,

Yoshiki.Tanaka, Yuichi.Kageyama}@sony.com

Abstract
Scaling the distributed deep learning to a massive GPU cluster level is
challenging due to the instability of the large mini-batch training and the
overhead of the gradient synchronization. We address the instability of the
large mini-batch training with batch size control. We address the overhead
of the gradient synchronization with 2D-Torus all-reduce. Specifically,
2D-Torus all-reduce arranges GPUs in a logical 2D grid and performs a
series of collective operation in different orientations. These two techniques
are implemented with Neural Network Libraries (NNL) 1 . We have
successfully trained ImageNet/ResNet-50 in 224 seconds without significant
accuracy loss on ABCI2 cluster.

1 Introduction
As the size of datasets and deep neural network (DNN) model for deep learning increase, the
time required to train a model is also increasing. Large-scale distributed deep learning with
data parallelism is an obvious course to effectively reduce the training time. However, there
are two technical issues with large-scale distributed deep learning with a massive GPU
cluster. The first issue is convergence accuracy degradation with large mini-batch training [1]
[2]. The second issue is communication overhead of gradient synchronization among GPUs.
A new approach to distributed processing is required to address these two issues.

In the past few years, many techniques have been proposed [1] [3] [4] [5] [6] to address these
two issues. These works utilize ImageNet/ResNet-50 training to benchmark the training
performance. ImageNet/ResNet-50 is one of the most popular datasets and DNN models for
benchmarking large-scale distributed deep learning. Table 1 compares the training time and
top-1 validation accuracy of the recent works. Among these works, 1-hour training with 256
Tesla P100 GPUs [1] is a well-known research to accelerate this task.

The instability of a large mini-batch training and the gradient synchronization overhead are
the primary issues that we addressed. Our best effort reduces the training time to 224 seconds
with the validation accuracy of 75.03% using 2176 Tesla V100 GPUs. We also attempt to
improve GPU scaling efficiency without significant accuracy loss. We achieved the GPU
scaling efficiency 91.62% with 1088 Tesla V100 GPUs (Table 2).

1 An open source deep learning library, developed by Sony. https://nnabla.org/
2 AI Bridging Cloud Infrastructure (ABCI) is the world's first large-scale Open AI Computing
Infrastructure, constructed and operated by National Institute of Advanced Industrial Science and
Technology (AIST). https://abci.ai/

Table 1 : Training time and top-1 1-crop validation accuracy with ImageNet/ResNet-50
 Batch Size Processor DL Library Time Accuracy
He et al. [7] 256 Tesla P100 x8 Caffe 29 hours 75.3%
Goyal et al. [1] 8K Tesla P100 x256 Caffe2 1 hour 76.3%
Smith et al. [4] 8K→16K full TPU Pod TensorFlow 30 mins 76.1%
Akiba et al. [5] 32K Tesla P100 x1024 Chainer 15 mins 74.9%
Jia et al. [6] 64K Tesla P40 x2048 TensorFlow 6.6 mins 75.8%
This work 34K→68K Tesla V100 x2176 NNL 224 secs 75.03%

Table 2 : GPU scaling efficiency with ImageNet/ResNet-50 training

 Processor Interconnect GPU scaling efficiency
Goyal et al. [1] Tesla P100 x256 50Gbit Ethernet ∼90%
Akiba et al. [5] Tesla P100 x1024 Infiniband FDR 80%
Jia et al. [6] Tesla P40 x2048 100Gbit Ethernet 87.9%
This work Tesla V100 x1088 Infiniband EDR x2 91.62%

2 Approach
There are two primary issues with large-scale distributed training: instability of large
mini-batch training and the synchronization communication overhead.

It is well-known that training with large mini-batch is unstable and creates generalization gap
[1] [2] [8]. In up to 32K mini-batch training on ImageNet/ResNet-50, this instability was
alleviated by several groups [1] [5] [9]. Besides this, [6] has achieved training with 64K
mini-batch.

A data parallel distributed training requires an extra step between every training iteration to
synchronize and average gradients across participating GPUs. This step is implemented using
an all-reduce collective operation. On a large-scale GPU cluster, the overhead of the
all-reduce collective operation makes it extremely challenging to achieve linear scaling [5]
[6].

These two issues are addressed in this work. We adopt batch size control technique
introduced in [4], [10], and [11] to address large mini-batch instability. We develop 2D-Torus
all-reducing scheme to efficiently exchange gradients across GPUs.

2 .1 B a tch S ize Co ntro l

According to the previous efforts, gradually increasing total mini-batch size during the
training reduces the instability of the large mini-batch training. Intuitively, increasing the
batch size as the loss landscape of the training becomes "flatter" helps evading the local
minima [4] [10] [11]. In this work, batch-size control is adopted to reduce accuracy
degradation with mini-batch size exceeding 32K. A predetermined batch-size change
scheduling is employed during the training.

2 .2 2 D-To rus A l l - red uce

An efficient communication topology is vital for reducing communication overhead of a
collective operation. Several communication topologies including Ring all-reduce [12] and
hierarchical Ring all-reduce [6] are proposed to improve the efficiency of the all-reduce
operation in the previous efforts.

Ring all-reduce algorithm cannot fully utilize the bandwidth of an extremely large-scale
cluster with over thousand GPUs. This is because the communication overhead of the

algorithm increases in proportion to the number of GPUs due to network latency as
illustrated in [12].

We develop 2D-Torus all-reduce to address this problem. The 2D-Torus topology is
described in Figure 1. The GPUs in the cluster are arranged in a 2D grid. In the 2D-torus
topology, all-reduce consists of three steps: reduce-scatter, all-reduce, and all-gather. An
example case of 2D-Torus all-reduce is shown in Figure 2. Firstly, reduce-scatter is
performed horizontally. Then, all-reduce is performed vertically. Finally, all-gather is
performed horizontally. Communication overhead of the 2D-Torus all-reduce is smaller than
that of Ring all-reduce. Let 𝑁𝑁 be the number of GPUs in the cluster, 𝑋𝑋 be the number of
GPUs in the horizontal direction, 𝑌𝑌 be the number of GPUs in the vertical direction.
2D-Torus all-reduce executes 2(𝑋𝑋 − 1) GPU-to-GPU operations. Comparatively, Ring
all-reduce scheme executes 2(𝑁𝑁 − 1) GPU-to-GPU operations [12]. While the hierarchical
all-reduce also does the same amount of GPU-to-GPU operation as the 2D-Torus all-reduce,
the data size of the second step (vertical all-reduce) of the 2D-Torus all-reduce scheme is 𝑋𝑋
times smaller than that of the hierarchical all-reduce.

Figure 1 : The 2D-Torus topology comprises of multiple rings in horizontal and vertical

orientations.

Figure 2 : The 2D-Torus all-reduce steps of a 4-GPU cluster, arranged in 2x2 grid

3 Evaluation
3 .1 Ex per i me nta l Env iro n me nts

Software: We used Neural Network Libraries (NNL) and its CUDA extension as a DNN
training framework. We used development branches based on NNL version 1.0.0. CUDA
version 9.0 with cuDNN version 7.3.1 is employed to train DNN in GPUs. We used NCCL
version 2.3.5 and OpenMPI version 2.1.3 as communication libraries. The 2D-Torus
all-reduce is implemented with NCCL2. The above software is packaged in a Singularity
container. We used Singularity version 2.5.2 to run distributed DNN training.

Hardware: We used AI Bridging Cloud Infrastructure (ABCI) as a GPU cluster. ABCI is a
GPU cluster operated by National Institute of Advanced Industrial Science and Technology
(AIST). It includes 1088 nodes. Each node has 4 NVIDIA Tesla V100 GPUs, 2 Xeon Gold
6148 processors, and 376 GB of memory. GPUs in the same node are connected with
NVLink2 interconnect, whereas nodes are connected with 2 InfiniBand EDR interconnects.

3 .2 Ex per i me nta l Se t t ing s

Dataset and Model: We used ImageNet [13] dataset. This is a dataset for 1,000 classes
image classification. ImageNet consists of 1.28 million training images and 50,000
validation images. We used NNL’s implementation of image augmentation operations
including padding, scaling, rotations, resizing, distortion, flipping, brightness adjustment,
contrast adjustment, and noising in all our experiments. We used ResNet-50 [7] as a DNN
model. All layers in the model are initialized by the values described in [9].

Training Settings: We used LARS [9] with coefficient of 0.01 and eps of 1e-6 to update the
weights. The learning-rate (LR) is calculated by the following formula. We used 5-epochs LR
warmup. The base LRs of 29 and 50 are the exact value used in [9] and the maximum value
suggested in [3] respectively.

epoch=
ProcessedSamples

DataSize

 LearningRate(epoch)=

⎩
⎪⎪
⎨

⎪⎪
⎧0.2+(29-0.2)

epoch
5

 if epoch < 5

29 �1-
epoch

90
�

2

 if epoch < 30

50 �1-
epoch

90
�

2

 otherwise

The momentum is calculated from total mini-batch size and learning-rate according to the
relation proposed by [14] with the following formula.

NoiseScale(epoch)=
LearningRate(epoch)·32·1024

1-0.9

Momentum(epoch)=1-
LearningRate(epoch)·B

NoiseScale(epoch)

3

We also employed mixed-precision training introduced in [15]. The forward/backward
computations and the communication to synchronize gradients are conducted in half
precision float (FP16). The computation in LARS was conducted in single precision float
(FP32) because LARS required a wider dynamic range than the FP16 format [6]. We also
employed “Batch Normalization without Moving Average” [5] to get the accurate sample
mean and variance. The communication to synchronize batch mean and batch squared mean
was also conducted in FP32 due to the wider dynamic range. We used 1024 times
loss-scaling to decrease numeric errors. We tuned per-worker and total mini-batch size as
shown in Table 3 to increase the maximum total mini-batch size. We experimented with
increasing the maximum total mini-batch size by increasing the number of GPUs (Exp.1 to
Exp.4). However, the training became inefficient when we used over 2176 GPUs (described
in the next section). Because of this issue, Exp. 5 and Exp. 6 used only 2176 GPUs.

Gradient Synchronization: Backward computation and communication to synchronize
gradients are conducted in parallel by using NNL’s feature. Gradients are synchronized every
14MB. This number is the result of the preliminary experiments not discussed in this paper.

3 B is a total mini-batch size

3 .3 Resu l t s

We finished the ResNet-50 training in 224 seconds with no significant accuracy loss as
shown in Table 5. The training error curves closely resemble the reference curve (Figure 3).
While the maximum mini-batch size can be increased to 119K with no significant accuracy
loss, further increasing the maximum mini-batch size to 136K decreases the accuracy by
about 0.5% (Exp. 6 in Table 5).

We describe training speed and GPU scaling efficiency compared to a single node (4 GPUs)
of our method. Table 6 shows the number of GPUs and training throughput when per-worker
mini-batch size is set to 32. Although the GPU scaling efficiency decreased from 50 to 70%
when we used over 2176 GPUs, it is over 90% when we used 1088GPUs. Previous
research [6] reported that the GPU scaling efficiency is 87.9% when they used 1024 Tesla
P40s with per-worker mini-batch size set to 32. Compared to the previous research, our
communication scheme achieved higher GPU scaling efficiency with faster GPUs (Tesla
V100) and more GPUs.

4 Training settings (e.g., hyper parameters) reported in [9] are used.
5 We used only 1088GPUs in these durations.

Table 3: The list of per-worker/total mini-batch size used in our experiments

 #GPUs
(Max)

Epoch 1-30 Epoch 31-45 Epoch 46-75 Epoch 76-90

Reference4 64 Per-worker 32
Total 32K

Exp. 1 1088 Per-worker 32
Total 34K

Per-worker 32
Total 68K

Exp. 2 2176 Per-worker 16
Total 34K

Per-worker 32
Total 68K

Exp. 3 2720 Per-worker 16
Total 34K5

Per-worker 16
Total 42.5K

Per-worker 32
Total 85K

Exp. 4 3264 Per-worker 16
Total 51K

Per-worker 20
Total 63.75K

Per-worker 32
Total 102K

Exp. 5 2176 Per-worker 16
Total 34K

Per-worker 32
Total 68K

Per-worker 40
Total 85K

Per-worker 56
Total 119K

Exp. 6 2176 Per-worker 32
Total 68K

Per-worker 64
Total 136K

Table 4: The grid dimensions of the 2D-Torus topology used in our experiments.

 #GPUs Vertical Horizontal
 1088 32 34
 2176 64 34
 2720 40 68
 3264 48 68

6 FP32 is used for computation and communication.

Table 5: Top-1 1-crop validation accuracy and training time

 #GPUs
(Max)

Batch Size
(Min/Max)

Validation Accuracy Time

Reference6 64 32K 74.74% 124.89 mins
Exp. 1 1088 32K/68K 74.68% 291 secs
Exp. 2 2176 32K/68K 75.03% 224 secs
Exp. 3 2720 32K/85K 74.86% 296 secs
Exp. 4 3264 32K/102K 74.86% 247 secs
Exp. 5 2176 32K/119K 74.79% 232 secs
Exp. 6 2176 32K/136K 74.21% 247 secs

Figure 3: Training error curves

4 Conclusion
Large-scale distributed deep learning is an effective approach to reduce a DNN training time.
We employ several techniques to reduce accuracy degradation while maintaining high GPU
scaling efficiency when training with an enormous GPU cluster. The techniques are
implemented using Neural Network Libraries. We achieved the training time of 224 seconds
and the validation accuracy of 75.03% using 2176 Tesla V100 GPUs. We also achieved over
90% GPU scaling efficiency with 1088 Tesla V100 GPUs.

Ac kno w ledg me nts

Computational resource of AI Bridging Cloud Infrastructure (ABCI) was awarded by "ABCI
Grand Challenge" Program, National Institute of Advanced Industrial Science and
Technology (AIST).

The authors would like to thank K. Yoshiyama, T. Narihira, Y. Kobayashi and A. Nakamura
for the technical advice as well as A. Shin for the help regarding the manuscript.

References
[1] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia

and K. He, "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,"
arXiv:1706.02677, 2017.

[2] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy and P. T. P. Tang, "On Large-Batch
Training for Deep Learning: Generalization Gap and Sharp Minima," in ICLR, 2017.

[3] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel and K. Keutzer, "ImageNet Training in 24
Minutes," arXiv:1709.05011v1, 2017.

[4] S. L. Smith, P.-J. Kindermans, C. Ying and Q. V. Le, "Don't Decay the Learning Rate,
Increase the Batch Size," in NIPS, 2017.

[5] T. Akiba, S. Suzuki and K. Fukuda, "Extremely Large Minibatch SGD: Training ResNet-50
on ImageNet in 15 Minutes," arXiv:1711.04325, 2017.

[6] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu, T.
Chen, G. Hu, S. Shi and X. Chu, "Highly Scalable Deep Learning Training System with
Mixed-Precision: Training ImageNet in Four Minutes," arXiv:1807.11205, 2018.

[7] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," in
CVPR, 2016.

[8] E. Hoffer, I. Hubara and D. Soudry, "Train longer, generalize better: closing the
generalization gap in large batch training of neural networks," in NIPS, 2017.

[9] Y. You, I. Gitman and B. Ginsburg, "Large Batch Training of Convolutional Networks,"
arXiv:1708.03888, 2017.

[10] A. Devarakonda, M. Naumov and M. Garland, "AdaBatch: Adaptive Batch Sizes for Training
Deep Neural Networks," arXiv:1712.02029, 2017.

[11] Z. Yao, A. Gholami, K. Keutzer and M. Mahoney, "Large batch size training of neural
networks with adversarial training and second-order information," arXiv:1810.01021, 2018.

Table 6: Training throughput and scaling efficiency of the 2D-Torus all-reduce

 #GPUs Images per Second GPU Scaling Efficiency
 4 1608 -
 1088 400778 91.62%
 2176 579040 66.19%
 2720 729051 66.67%
 3264 688504 52.47%

[12] Baidu Research, "baidu-allreduce," 2017. [Online]. Available:
https://github.com/baidu-research/baidu-allreduce.

[13] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li and L. F. fei, "Imagenet: A large-scale
hierarchical image database," in CVPR, 2009.

[14] S. L. Smith and Q. V. Le, "A Bayesian Perspective on Generalization and Stochastic Gradient
Descent," in ICLR, 2018.

[15] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M.
Houston, O. Kuchaiev, G. Venkatesh and H. Wu, "Mixed Precision Training," in ICLR, 2018.

