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Abstract 
Scaling the distributed deep learning to a massive GPU cluster level is 
challenging due to the instability of the large mini-batch training and the 
overhead of the gradient synchronization. We address the instability of the 
large mini-batch training with batch size control. We address the overhead 
of the gradient synchronization with 2D-Torus all-reduce. Specifically, 
2D-Torus all-reduce arranges GPUs in a logical 2D grid and performs a 
series of collective operation in different orientations. These two techniques 
are implemented with Neural Network Libraries (NNL) 1  . We have 
successfully trained ImageNet/ResNet-50 in 224 seconds without significant 
accuracy loss on ABCI2 cluster. 

 

1 Introduction 
As the size of datasets and deep neural network (DNN) model for deep learning increase, the 
time required to train a model is also increasing. Large-scale distributed deep learning with 
data parallelism is an obvious course to effectively reduce the training time. However, there 
are two technical issues with large-scale distributed deep learning with a massive GPU 
cluster. The first issue is convergence accuracy degradation with large mini-batch training [1] 
[2]. The second issue is communication overhead of gradient synchronization among GPUs. 
A new approach to distributed processing is required to address these two issues. 

In the past few years, many techniques have been proposed [1] [3] [4] [5] [6] to address these 
two issues. These works utilize ImageNet/ResNet-50 training to benchmark the training 
performance. ImageNet/ResNet-50 is one of the most popular datasets and DNN models for 
benchmarking large-scale distributed deep learning. Table 1 compares the training time and 
top-1 validation accuracy of the recent works. Among these works, 1-hour training with 256 
Tesla P100 GPUs [1] is a well-known research to accelerate this task. 

The instability of a large mini-batch training and the gradient synchronization overhead are 
the primary issues that we addressed. Our best effort reduces the training time to 224 seconds 
with the validation accuracy of 75.03% using 2176 Tesla V100 GPUs. We also attempt to 
improve GPU scaling efficiency without significant accuracy loss. We achieved the GPU 
scaling efficiency 91.62% with 1088 Tesla V100 GPUs (Table 2). 

 

 

 
                                                           
1 An open source deep learning library, developed by Sony. https://nnabla.org/ 
2 AI Bridging Cloud Infrastructure (ABCI) is the world's first large-scale Open AI Computing 
Infrastructure, constructed and operated by National Institute of Advanced Industrial Science and 
Technology (AIST). https://abci.ai/ 



Table 1 : Training time and top-1 1-crop validation accuracy with ImageNet/ResNet-50 
 Batch Size Processor DL Library Time Accuracy 
He et al. [7] 256 Tesla P100 x8 Caffe 29 hours 75.3% 
Goyal et al. [1] 8K Tesla P100 x256 Caffe2 1 hour 76.3% 
Smith et al. [4] 8K→16K full TPU Pod TensorFlow 30 mins 76.1% 
Akiba et al. [5] 32K Tesla P100 x1024 Chainer 15 mins 74.9% 
Jia et al. [6] 64K Tesla P40 x2048 TensorFlow 6.6 mins 75.8% 
This work 34K→68K Tesla V100 x2176 NNL 224 secs 75.03% 

 
Table 2 : GPU scaling efficiency with ImageNet/ResNet-50 training 

 Processor Interconnect GPU scaling efficiency 
Goyal et al. [1] Tesla P100 x256 50Gbit Ethernet ∼90% 
Akiba et al. [5] Tesla P100 x1024 Infiniband FDR 80% 
Jia et al. [6] Tesla P40 x2048 100Gbit Ethernet 87.9% 
This work Tesla V100 x1088 Infiniband EDR x2 91.62% 

 
2 Approach 
There are two primary issues with large-scale distributed training: instability of large 
mini-batch training and the synchronization communication overhead. 

It is well-known that training with large mini-batch is unstable and creates generalization gap 
[1] [2] [8]. In up to 32K mini-batch training on ImageNet/ResNet-50, this instability was 
alleviated by several groups [1] [5] [9]. Besides this, [6] has achieved training with 64K 
mini-batch.  

A data parallel distributed training requires an extra step between every training iteration to 
synchronize and average gradients across participating GPUs. This step is implemented using 
an all-reduce collective operation. On a large-scale GPU cluster, the overhead of the 
all-reduce collective operation makes it extremely challenging to achieve linear scaling [5] 
[6]. 

These two issues are addressed in this work. We adopt batch size control technique 
introduced in [4], [10], and [11] to address large mini-batch instability. We develop 2D-Torus 
all-reducing scheme to efficiently exchange gradients across GPUs. 

 
2 .1  B a tch  S ize  Co ntro l  

According to the previous efforts, gradually increasing total mini-batch size during the 
training reduces the instability of the large mini-batch training. Intuitively, increasing the 
batch size as the loss landscape of the training becomes "flatter" helps evading the local 
minima [4] [10] [11]. In this work, batch-size control is adopted to reduce accuracy 
degradation with mini-batch size exceeding 32K. A predetermined batch-size change 
scheduling is employed during the training. 

 
2 .2  2 D-To rus  A l l - red uce  

An efficient communication topology is vital for reducing communication overhead of a 
collective operation. Several communication topologies including Ring all-reduce [12] and 
hierarchical Ring all-reduce [6] are proposed to improve the efficiency of the all-reduce 
operation in the previous efforts. 

Ring all-reduce algorithm cannot fully utilize the bandwidth of an extremely large-scale 
cluster with over thousand GPUs. This is because the communication overhead of the 



algorithm increases in proportion to the number of GPUs due to network latency as 
illustrated in [12]. 

We develop 2D-Torus all-reduce to address this problem. The 2D-Torus topology is 
described in Figure 1. The GPUs in the cluster are arranged in a 2D grid. In the 2D-torus 
topology, all-reduce consists of three steps: reduce-scatter, all-reduce, and all-gather. An 
example case of 2D-Torus all-reduce is shown in Figure 2. Firstly, reduce-scatter is 
performed horizontally. Then, all-reduce is performed vertically. Finally, all-gather is 
performed horizontally. Communication overhead of the 2D-Torus all-reduce is smaller than 
that of Ring all-reduce. Let 𝑁𝑁 be the number of GPUs in the cluster, 𝑋𝑋 be the number of 
GPUs in the horizontal direction, 𝑌𝑌 be the number of GPUs in the vertical direction. 
2D-Torus all-reduce executes 2(𝑋𝑋 − 1)  GPU-to-GPU operations. Comparatively, Ring 
all-reduce scheme executes 2(𝑁𝑁 − 1) GPU-to-GPU operations [12]. While the hierarchical 
all-reduce also does the same amount of GPU-to-GPU operation as the 2D-Torus all-reduce, 
the data size of the second step (vertical all-reduce) of the 2D-Torus all-reduce scheme is 𝑋𝑋 
times smaller than that of the hierarchical all-reduce. 

 
Figure 1 : The 2D-Torus topology comprises of multiple rings in horizontal and vertical 

orientations. 
 

  
Figure 2 : The 2D-Torus all-reduce steps of a 4-GPU cluster, arranged in 2x2 grid 

 
3 Evaluation 
3 .1  Ex per i me nta l  Env iro n me nts  

Software: We used Neural Network Libraries (NNL) and its CUDA extension as a DNN 
training framework. We used development branches based on NNL version 1.0.0. CUDA 
version 9.0 with cuDNN version 7.3.1 is employed to train DNN in GPUs. We used NCCL 
version 2.3.5 and OpenMPI version 2.1.3 as communication libraries. The 2D-Torus 
all-reduce is implemented with NCCL2. The above software is packaged in a Singularity 
container. We used Singularity version 2.5.2 to run distributed DNN training. 



Hardware: We used AI Bridging Cloud Infrastructure (ABCI) as a GPU cluster. ABCI is a 
GPU cluster operated by National Institute of Advanced Industrial Science and Technology 
(AIST). It includes 1088 nodes. Each node has 4 NVIDIA Tesla V100 GPUs, 2 Xeon Gold 
6148 processors, and 376 GB of memory. GPUs in the same node are connected with 
NVLink2 interconnect, whereas nodes are connected with 2 InfiniBand EDR interconnects. 

 
3 .2  Ex per i me nta l  Se t t ing s  

Dataset and Model: We used ImageNet [13] dataset. This is a dataset for 1,000 classes 
image classification. ImageNet consists of 1.28 million training images and 50,000 
validation images. We used NNL’s implementation of image augmentation operations 
including padding, scaling, rotations, resizing, distortion, flipping, brightness adjustment, 
contrast adjustment, and noising in all our experiments. We used ResNet-50 [7] as a DNN 
model. All layers in the model are initialized by the values described in [9]. 

Training Settings: We used LARS [9] with coefficient of 0.01 and eps of 1e-6 to update the 
weights. The learning-rate (LR) is calculated by the following formula. We used 5-epochs LR 
warmup. The base LRs of 29 and 50 are the exact value used in [9] and the maximum value 
suggested in [3] respectively. 
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The momentum is calculated from total mini-batch size and learning-rate according to the 
relation proposed by [14] with the following formula. 
 

NoiseScale(epoch)=
LearningRate(epoch)·32·1024

1-0.9

Momentum(epoch)=1-
LearningRate(epoch)·B

NoiseScale(epoch)

3 

 
We also employed mixed-precision training introduced in [15]. The forward/backward 
computations and the communication to synchronize gradients are conducted in half 
precision float (FP16). The computation in LARS was conducted in single precision float 
(FP32) because LARS required a wider dynamic range than the FP16 format [6]. We also 
employed “Batch Normalization without Moving Average” [5] to get the accurate sample 
mean and variance. The communication to synchronize batch mean and batch squared mean 
was also conducted in FP32 due to the wider dynamic range. We used 1024 times 
loss-scaling to decrease numeric errors. We tuned per-worker and total mini-batch size as 
shown in Table 3 to increase the maximum total mini-batch size. We experimented with 
increasing the maximum total mini-batch size by increasing the number of GPUs (Exp.1 to 
Exp.4). However, the training became inefficient when we used over 2176 GPUs (described 
in the next section). Because of this issue, Exp. 5 and Exp. 6 used only 2176 GPUs. 

Gradient Synchronization: Backward computation and communication to synchronize 
gradients are conducted in parallel by using NNL’s feature. Gradients are synchronized every 
14MB. This number is the result of the preliminary experiments not discussed in this paper.  

                                                           
3 B is a total mini-batch size 



 
3 .3  Resu l t s  

We finished the ResNet-50 training in 224 seconds with no significant accuracy loss as 
shown in Table 5. The training error curves closely resemble the reference curve (Figure 3). 
While the maximum mini-batch size can be increased to 119K with no significant accuracy 
loss, further increasing the maximum mini-batch size to 136K decreases the accuracy by 
about 0.5% (Exp. 6 in Table 5). 

We describe training speed and GPU scaling efficiency compared to a single node (4 GPUs) 
of our method. Table 6 shows the number of GPUs and training throughput when per-worker 
mini-batch size is set to 32. Although the GPU scaling efficiency decreased from 50 to 70% 
when we used over 2176 GPUs, it is over 90% when we used 1088GPUs. Previous 
research [6] reported that the GPU scaling efficiency is 87.9% when they used 1024 Tesla 
P40s with per-worker mini-batch size set to 32. Compared to the previous research, our 
communication scheme achieved higher GPU scaling efficiency with faster GPUs (Tesla 
V100) and more GPUs. 

                                                           
4 Training settings (e.g., hyper parameters) reported in [9] are used. 
5 We used only 1088GPUs in these durations. 

Table 3: The list of per-worker/total mini-batch size used in our experiments 

 #GPUs 
(Max) 

Epoch 1-30 Epoch 31-45 Epoch 46-75 Epoch 76-90 

Reference4 64 Per-worker 32 
Total 32K 

Exp. 1 1088 Per-worker 32 
Total 34K 

Per-worker 32 
Total 68K 

Exp. 2 2176 Per-worker 16 
Total 34K 

Per-worker 32 
Total 68K 

Exp. 3 2720 Per-worker 16 
Total 34K5 

Per-worker 16 
Total 42.5K 

Per-worker 32 
Total 85K 

Exp. 4 3264 Per-worker 16 
Total 51K 

Per-worker 20 
Total 63.75K 

Per-worker 32 
Total 102K 

Exp. 5 2176 Per-worker 16 
Total 34K 

Per-worker 32 
Total 68K 

Per-worker 40 
Total 85K 

Per-worker 56 
Total 119K 

Exp. 6 2176 Per-worker 32 
Total 68K 

Per-worker 64 
Total 136K 

 
Table 4: The grid dimensions of the 2D-Torus topology used in our experiments. 

  #GPUs Vertical Horizontal    
  1088 32 34    
  2176 64 34    
  2720 40 68    
  3264 48 68    

 



 
 

                                                           
6 FP32 is used for computation and communication. 

Table 5: Top-1 1-crop validation accuracy and training time 

 #GPUs 
(Max) 

Batch Size 
(Min/Max) 

Validation Accuracy Time 

Reference6 64 32K 74.74% 124.89 mins 
Exp. 1 1088 32K/68K 74.68% 291 secs 
Exp. 2 2176 32K/68K 75.03% 224 secs 
Exp. 3 2720 32K/85K 74.86% 296 secs 
Exp. 4 3264 32K/102K 74.86% 247 secs 
Exp. 5 2176 32K/119K 74.79% 232 secs 
Exp. 6 2176 32K/136K 74.21% 247 secs 

 

 
Figure 3: Training error curves 

 



 
4  Conclusion 
Large-scale distributed deep learning is an effective approach to reduce a DNN training time. 
We employ several techniques to reduce accuracy degradation while maintaining high GPU 
scaling efficiency when training with an enormous GPU cluster. The techniques are 
implemented using Neural Network Libraries. We achieved the training time of 224 seconds 
and the validation accuracy of 75.03% using 2176 Tesla V100 GPUs. We also achieved over 
90% GPU scaling efficiency with 1088 Tesla V100 GPUs. 
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